
Macho: Writing Programs with Natural Language
and Examples

Anthony Cozzie
University of Illinois at Urbana-Champaign

acoz@acoz.net

Samuel T. King
University of Illinois at Urbana-Champaign

kingst@illinois.edu

Abstract—Current natural language programming systems
avoid the difficulties of dealing with abstract and ambiguous
concepts by restricting the input words to those comparable
to a normal high-level programming language. Our system,
Macho can write programs from significantly more abstract
language by asking the programmer to provide a unit test: one
or more examples of correct input and output. This may seem
unnecessarily complicated, but we show that natural language
and examples have a surprising synergy both in constraining the
ambiguity of the specification and in generating correct solutions.

I. INTRODUCTION

Writing computer programs in natural language is one of the
most obvious yet frustrating tasks in computer science. Such a
system sounds incredibly appealing: programming languages
are accessible to a small fraction of trained programmers,
while natural language is accessible to everyone. In practice
things are different. Consider Pegasus [1] in 2006 writing
insertion sort:

Take the array [3, 5, 7, 4, 6, 2, 1].
Print "Before: " and print the array.

Count from one up to the size of the array:
Go over the array from the beginning
to the end minus the counter:
If the current element is bigger than
the following element then exchange
the current element with the following
element.

Print "After: " and print the array.

Although this example is impressively long and compli-
cated, it’s very similar to a formal language. It’s just as low
level, requires just as much precision from the programmer,
and is just as hard to read and understand. Ideally, we would
like to raise the level of abstraction, but with increased
abstraction comes increased ambiguity. If a natural language
programming system sees “Mail this letter to the members of
the campaign committee”, what font should it use? Fedex or
first class mail? This causes problems both for the system,
which must make choices, and for the programmer, who does
not know what choices were made [2].

All attempts at natural language programming [1], [3], [4],
[5] that we know of work by restricting the user to a small

set of low-level, precise English. This allows their systems
to produce working code, but, like the previous example, the
resulting natural language is cumbersome, and everyone still
uses formal programming languages with syntax characters.

Our system, Macho, can write programs from natural lan-
guage which is significantly more abstract, like
Search a file for a pattern.
or
Print the files in a directory.
or
Print a file. Number non-blank lines.
Although these examples are simpler and smaller, they are

also more challenging to synthesize, because ambiguity is
already creeping into the picture. Should ‘search’ find a regular
expression or a literal string? Does ‘print’ refer to the name or
the contents of the directory entries? And what Java libraries
will do all of this?

Macho resolves this ambiguity by asking the programmer to
provide a small unit test in addition to the natural language:
one or more correct input/output pairs. Using two different
inputs seems to create unnecessary problems, but in fact
the key insight behind Macho is the considerable synergy
between the natural language and examples. Natural language
provides broad but incomplete information over the entire
input space, while examples provide complete information
over a small fraction of the input space. The set of programs
that satisfy both is much smaller than those that satisfy either
input independently. The additional constraints provided by the
examples allow Macho to write programs from more abstract
natural language without suffering a correspondingly large rise
in ambiguity. This actually is not that surprising, because it
works for people: textbooks, research papers, and presentations
are loaded with examples which help make concepts concrete
after high-level discussions.

Natural language and examples also work together during
synthesis. Understanding abstract natural language is hard
because while each piece may make sense individually, the
program must assemble the fragments into a cohesive whole.
But any candidate program that passes a nontrivial unit test is
likely to be quite reasonable. Programming from examples [6],
[7], [8], [9] is hard because there are many programs that will
pass the unit test, with the most obvious being a case structure
over the inputs, and the search in the space of candidate
programs rapidly explodes. But the natural language provides

a perfect set of heuristics to generate reasonable candidate
programs.

Macho writes code by performing a breadth-first search in
the space of possible programs. Candidate solutions are gen-
erated by repeated application of simple handwritten patterns,
like ‘implement this operation as a Java function’ or ‘map this
noun to that variable’. Their fitness is estimated by a Bayesian
probabilistic model that was trained on a database of open
source Java code. The best candidates are then executed on
each example input in the unit test and their output compared
with the reference.

Because it is built around probabilistic machine learning
algorithms, Macho has no well-defined input language, which
makes it hard to develop a good intuition about the kinds
of programs Macho can write. In our evaluation section we
discuss example natural language that Macho can and cannot
convert to code and why. Three necessary but not sufficient
conditions are: the input text must refer to methods and objects
in ways similar to the programmers in Macho’s database,
the input text must be structurally similar to the desired
program code, and the resulting code must be composed of
existing Java library calls. This is still a fairly low level
of abstraction, but Macho was able to write 55 out of 69
of our programs correctly, with solution times between 2
and 20 minutes. We uploaded Macho’s full output to http:
//www.acoz.net/macho results/. This includes descriptions of
every pattern, the patterns Macho used to synthesize every
program, and graphs of every candidate solution including
details of the probabilistic model.

Macho cannot eliminate all ambiguity. Programs written by
Macho may not be correct, even if they pass the unit test,
which is why we view Macho as a tool to assist programmers,
not replace them. Most industrial programmers must write
comments and a unit test for each function anyway, so Macho
is simply an opportunity to potentially get some code for free.

Our contributions:
• The first system to use dual inputs of natural language

and examples to write programs.
• Substantial improvements in the level of abstraction rel-

ative to natural language programming systems, and in
complexity and scope relative to example-based program-
ming systems.

II. DESIGN AND IMPLEMENTATION

A. Overview

Most natural language programming systems rely on gram-
mar as a crude replacement for syntax. While a compiler
parses print(a) into a method call and a variable use, a
natural language programming system will break down Print
the array into an imperative verb, article, and noun. It will
then assign an operation or function to each verb and a variable
to each noun. When the sentence structure is simple and the
words are precise, this can be done with a small number of
deterministic rules.

When the level of abstraction goes up, ambiguity
creeps in. Consider the specification Print the files

in the directory. There are two reasonable parses:
print(files,directory), meaning print the files into
the directory, or print(files(directory)), meaning
print the files that are already in the directory. There are
multiple legitimate functions that could satisfy print: print
the name of the file, print the contents of the file, and variants
with different formatting.

Macho works like a nondeterministic version of a traditional
natural language programming system: it generates multiple
candidate solutions for the natural language input and checks
them against the unit test at the end to see if one passes.
Our first version of Macho [10] was particularly simple: any
time it had a choice of different parses or assignments it
tried everything. This approach broke down quickly for larger
inputs. Adding a probabilistic model not only allows Macho
to handle larger problems, but also a larger number of rules.

B. Probabilistic Model

To rank possible implementations of the input text T ,
Macho assigns each candidate program P some probability
p(P |T). Both the input text and the candidate program are
too complicated to model directly, and in any case we have no
database of training data. Instead, Macho breaks the text into
pieces grammatically, maps each piece to part of the candidate
program, and estimates the likelihood of this correspondence.

Intuitively, this is very similar to the traditional approach
described in the previous section; nouns are mapped to vari-
ables and verbs are mapped to functions. We were able to
train this model on a large database of open source Java code
using only programmer labels. For example, the probability
that a variable of type java.io.File represents a file
noun is estimated from the number of times java.io.File
variables in the database were named ‘file’.

We can now define some terminology:

• T is the input text
• c is a concept, like ‘file’, which we expect to map to a

variable in the candidate program. C is the set of concepts
in the skeleton program.

• e is an event, like ‘print’, which we expect to map to a
function in the candidate program. E is the set of events
in the skeleton program.

• r is a relation, like ‘in’ or ‘of’. R is the set of events in
the skeleton program

• u is a property, like ‘large’. U is the set of properties in
the skeleton program.

• S is the program skeleton, or all concepts, relations,
events, or properties.

• v is a variable in the program, and V is the set of all
variables

• f is a function call in the program, and F is the set of
all function calls

• P is a candidate program, or all variables and functions;
P the entire set of candidates

Macho uses a generative Naive Bayes model, which breaks
down as follows:

p(P |T) = p(P |S)p(S|T) (1)

p(S|T) is the probability of a given parse tree of the
sentence returned by the parser. Next we apply Bayes’ Rule:

p(P |S) = p(S|P)|p(P)

p(S)
(2)

and break S and P into their components:

p(P |S) = p(C|P)p(E|P)p(R|P)p(U |P)p(F)p(V)∑
P∈P p(S|P)p(P)

(3)

The denominator is an intractable sum over all possible
programs, but it does not affect the most likely solution. Our
model assumes independence for simplicity, so p(C|P) =∏

c∈C p(c|P) and so on. Each component was trained from
our database of open source Java code.

1) Function Prior: p(f): The simplest function prior
assumes that all function calls are independent. This can
be directly measured from the database. For example,
java.io.File.list() was seen 273 times out of a total
of 4.5 million total calls, giving it a prior of .00006. Of course,
these functions are not independent at all. We tried several
methods for predicting the type from the surrounding code
[11], [12] but we had the best results with something extremely
simple.

Macho defines p(f) as the number of times f was seen in
the database divided by the number of call sites where all of
f ’s parameters were in scope. If there is no java.io.File
variable in scope, it would be impossible to call list(). This
reduces the number of possible call sites from 4.5 million to
225 thousand, giving java.io.File.list() a prior of
.0012. This change nicely models the object oriented structure
of Java: it’s very unlikely to call XMLParser.getToken(),
unless there is an XMLParser object in scope which makes
it quite likely.

2) Variable Prior: p(v): Macho models the types of vari-
ables, but not their names. Input variables are assumed to be
independent of each other and are assigned p(v) equal to the
number of variables of type v divided by the total number
of variables in the database. Intermediate variables have their
type constrained by the function generating their value, and
are assigned a prior of 1.0, since any other type would break
the program (we ignored casts and inheritance for simplicity).

3) Concept Posterior: p(c|P): Each concept (noun) is
aligned with a single variable in the program, and the concept
posterior measures the probability that this variable would be
so labeled in the database. For example, out of the 273 times
java.io.File.list() was seen in the database, the
input variable was named ‘dir’ (or a variant, like ‘outputDir’)
66 times, ‘f’ 41 times, ‘file’ 38 times, and so on. Macho
measures the probability of a given name p(c|f, i) for every
input and output of every function in the database; in this
case p(dir|java.io.F ile.list(), input0) = 66/273 = 0.24).
We also measured p(c|t), the probability that any variable of

type t would be named c. This is especially useful for functions
where Macho does not have enough training data to accurately
measure p(c|f, i). Combining this and all functions that read
from or write to the variable:

p(c|P) = p(c|t)
∏

f,i∈inputs

p(c|f, i)
∏

f,o∈outputs

p(c|f, o) (4)

4) Event Posterior: p(e|P): The event posterior works
exactly like the concept posterior, except that the function has
only one name. This caused us surprisingly few problems, but
to handle those cases we added a synonym file. For example
‘display’ is given as a synonym for print, rather than a pdf
of {(Display, 1.0)}, it becomes {(Display, 0.5), (Print, 0.5)}.
Our synonym file has approximately 10 entries (the main one
being show/print/display) and is included in our full results
online.

5) Property Posterior: p(u|P): Properties are treated as
either concepts or events depending on what they are mapped
to. For example, the property ‘source’ from the text ‘source
file’ will be treated as a concept while the property ‘blank’
from ‘blank lines’ will be treated as a function which selects
a subset of lines. Macho will try both and pick whichever
scores higher.

6) Relation Posterior: p(r|P): All relations are given a
uniform posterior when mapped to a function. Macho also
assigns uniform probabilities to the program skeleton, includ-
ing control flow, i.e. the programs f(g(x)) and g(f(x)) have
the same probability as long as they both type check.

7) Incomplete candidates: p̂(S|P): Most of the solutions
Macho evaluates are incomplete, i.e. not all of the skeleton
has been mapped to a concrete Java function or type. This
estimate of the real probability is quite important because it
controls which nodes are expanded and which are discarded.
p̂(v), p̂(r|P), p̂(u|P), and p̂(e|P) are small constant values.
However, this was insufficient for p̂(c|P); when approximated
by a small constant Macho tended to map all of its unassigned
concepts to the same untyped variable, even when this did not
make sense (the same variable would be labeled ‘file’ and
‘line’ for example). Therefore Macho estimates a weighted
average over possible types, where Co is the set of overlapping
concepts mapped to that variable:

p̂(Co) =
∑

t∈types
p(Co|t)(

p(Co|t)∑
t∈types p(Co|t)

) (5)

and

p(Co|t) =
∏
c∈Co

p(c|t) (6)

The same averaging is applied to p̂(c|f, i). Macho also
estimates p̂(F). When at least one of the inputs to a function is
known, but that function itself is not assigned, then the prior is
the weighted average of all functions which could be selected
without breaking the type system, i.e. they have the correct
number of parameters and there is an assignment from all of
the known inputs/outputs to those of the function.

C. Parsing

Macho’s first task is to parse the grammatical structure of
the input text, which it does using the Stanford Parser [13].
The nodes of the resulting parse tree are either labeled words,
e.g. NN:file, meaning that ‘file’ is a noun, or a phrase node
which reflects the structure of the sentence, e.g. NP(DT:a,
NN:file) which reflects the relation between the two words.
For a full list of tags see [14]. We were generally very pleased
with the Stanford parser, but unfortunately it was trained pri-
marily on a “normal” corpus of newspaper articles which used
substantially different vocabulary, causing numerous errors.
For example, ‘file’ is usually a verb, like “the SEC filed
charges against Enron today.” and print is often a noun, like,
“Their foul prints will not soon be cleansed from the financial
system.”. Macho usually avoids this problem by requesting the
best 10 parse trees, which almost always contain the correct
solution.

D. Graph Pattern Matching

Macho represents its candidate solutions as graphs, which
are flexible enough to represent parse trees, program skeletons,
pseudocode, and actual Java code with a single data structure.
There are nine types of graph nodes which fall into three
groups:

• Parser nodes, which represent the parse trees returned by
the Stanford Parser

• Concepts, relations, events, and properties, which repre-
sent skeleton programs.

• Variables, functions, constants, and blocks, which repre-
sent pseudocode and Java code

The main edges are dataflow and assignments between the
skeleton and concrete programs.

Macho’s candidate programs start their lives as parse trees
and are gradually refined by the repeated application of pat-
terns into pseudocode and finally compilable Java. A pattern
is composed of a set of trigger nodes, which must each match
a node in the candidate program, and a function which emits
one or more new candidate solutions in the event of a match.
These patterns are flexible enough to store all of Macho’s
manually defined knowledge and reusable enough that there
are only about 100, which roughly break down as:

• 50% parser conversion patterns, which convert parser
nodes to skeletons, like “replace a noun with a concept”.

• 10% instantiation patterns, which match/convert skeleton
programs to pseudocode, like “match concept x with
variable y”.

• 10% looping patterns, which handle Macho’s iterate
control flow block and replace the more complicated Java
loops.

• 10% assembly patterns, which convert Macho’s graph
language to real Java code.

• 10% specialized knowledge, like “get
the current working directory by calling
System.getProperty("user.dir")”

• 5% macros, which perform more complicated tasks, like
handling “ignore” by removing a subset of items.

• 5% hacks, many of which deal with the phrase “in sorted
order”, which the Stanford Parser did not handle well.

• 1 database pattern, which tries to match inferred function
calls to Java libraries, by estimating how their selection
would change the probabilistic model.

The complete list of patterns is available online as part of
our complete output.

E. Custom Libraries

The Java standard library is missing some functions that
would be very useful to Macho, like ReadAllLines() or
DownloadFile(), so we were forced to write our own.
Without any training data, we had guess at prior values and
input/output pdfs by hand. We did our best to make these
resemble the normal functions by including large noise terms
in the pdfs.

F. Testing and Formatting

After all of the candidates have been generated, Macho runs
the most probable 200 against the unit test. The candidates that
pass every test are ranked by the probabilistic model, and the
most likely one is returned to the programmer. Macho does
not attempt to debug candidates that pass some fraction of the
unit tests.

However, Macho does try multiple different format strings.
Our custom Print function prints the data in a serializeable
form. After execution Macho reads this list of print statements
back in, and tries to find a set of format statements which
would generate the output stream. For example, if the output
is from cat -b:

1 To be, or not to be: that is the question:
2 Whether ’tis nobler in the mind to suffer
3 The slings and arrows of outrageous fortune,

and Macho’s output looks like:
(PRN1 1 "To be, or not to be: that is the question:")
(PRN1 2 "Whether ’tis nobler in the mind to suffer")
(PRN1 3 "The slings and arrows of outrageous fortune,")

then Macho will encounter a new print statement (PRN1)
and use the output as a template to generate candidate for-
mat strings. PRN1 could be " %d %s" or "%6d %s"
or "%6d%45s" or even " 1 %s" by ignoring the first
argument; all of these will generate text that matches the first
part of the output exactly. The next time Macho sees PRN1
(the next line, in this case) it will use the same format string,
and if the output does not match, the candidate format string
will be discarded. If the entire output matches, each print
statement in the program is replaced by a System.format
call with the corresponding format string.

G. An Example

Figure 1 shows four candidate solutions Macho generated
for “Print the names of files in a directory”. Macho can
do much more complicated programs, but the graphs get
large very quickly. After running the Stanford Parser, Macho

Fig. 1. Four of Macho’s candidate solutions for “Print the files in a directory”. The easiest way to understand this diagram is to start at the right, with the
block labeled “Task:Print the names of the files in a directory”. This contains the skeleton program generated from the parse tree; the verb ‘print’ has become
an event, the nouns ‘names’, ‘files’, and ‘directory’ have become concepts, and the prepositions ‘in’ and ‘of’ have become relations. The box immediately
to the left (second from the right) is the best solution. Each event has been mapped to a function and each noun to a variable. The three boxes on the left
show intermediate solutions, starting with an empty program that matches the structure of the skeleton. All of them include a copy of the skeleton program
(you can see the lines going off to the right for each node) that has been removed to save space. The second candidate is generated from the first one by the
database pattern selecting the java.io.File.listFiles() function for the directory to files conversion, and the third candidate is generated
from the second by Macho trying a for loop over the resulting array. For more details see section II-G.

gradually converts its parse tree to the skeleton program shown
on the far right.

Once the parse tree has been completely converted to
features, Macho attempts to generate programs which fit them;
the three boxes on the left side of the figure show three
such candidate programs.The first candidate is pseudocode
representing a 1:1 feature-program mapping, which in this case
is correct because our spec has only one sentence. The variable
names reflect the concepts (and therefore the nouns) and the
function names reflect the events (and therefore the verbs).

Among the patterns that matches the first candidate
is the database pattern, which matches any function
which is still pseudocode. It searches Macho’s list of
Java API calls for functions that would be a good
fit based on the names and types of the surrounding
variables and the label the programmer assigned. We
will follow the correct selection File.listFiles(),
but Macho tries among others File.list() and
JFileChooser.getSelectedFiles(). It assigns
the Java code to the pseudocode function and types to the
input and output variables.

The third candidate shows Macho attempting to convert a
File array to names. The database pattern will also trigger here,
but there are not many functions which operate on an array of
files. So we added a simple pattern which triggers on any func-
tion which operates on an array: try inserting a loop around
the function, in this case a simple for each loop (spoon.iterate)
over the elements. The array driver operation will return each
successive element of the array. At this point the database pat-
tern will again trigger and this time return several candidates
for the new conversion, including getName(), getPath(),
and getAbsolutePath(), eventually leading to the final
program shown on the right side of the figure.

III. EVALUATION

Objectively evaluating Macho is very difficult, because there
is no standard benchmark suite that would allow us to compare
its results against other systems. Therefore we built our own
suite, and we chose to focus on generating standard Unix
command-line utilities. Their outputs are much easier to check
than GUI programs, but more importantly they provide a
precise specification that prevents us from declaring the first

Task Test Text Time Pass Best Prior Rank Result
CAT-1 cat Print a file. 3:42 6 3.60e-6 1 success
CAT-10 catreve Print a file. Show $̈ät the beginning of each line. 1:48 2 3.60e-7 1 success
CAT-11 catreve Print a file. 3:11 8 3.60e-6 1 success
CAT-12 cat -T Print a file. Display TAB characters as Î. 0 failure
CAT-2 cat Read a file. 14:23 3 3.60e-6 1 success
CAT-3 cat Display the contents of a file. 3:00 3 3.60e-6 1 success
CAT-4 cat Print the lines of a file. 3:04 1 2.40e-6 5 success
CAT-5 cat -b Print a file. Number non-blank lines. 5:57 2 4.06e-13 18 success
CAT-6 cat -n Print the lines of a file. Show line numbers. 9:49 4 3.60e-8 11 success
CAT-7 nonblanklines Print the number of non-blank lines in a file. 6:45 18 4.06e-12 1 success
CAT-8 whitespacechars Count the whitespace characters in a file. 4:13 15 5.33e-12 2 success
CAT-9 cat -E Print a file. Show $̈ät the end of each line. 0 failure
CP-1 cp Copy src file to dst file 6:00 18 1.63e-8 2 success
CP-2 cp Copy a file to a file. 5:41 3 1.63e-8 2 success
CP-3 cp Copy a file. 6:39 1 1.63e-8 2 success
CP-4 cp Duplicate a file. 6:30 1 1.63e-8 2 success
CP-5 cp -i Copy a file. Prompt before overwrite. 0 failure
CP-6 cp -u Copy a file. Only copy when the source file is newer. 0 failure
GREP-1 grep Print the lines in a file that match a pattern. 2:40 6 3.27e-10 6 success
GREP-2 grep -i Find a pattern in the lines of a file. 2:58 4 3.27e-13 6 success
GREP-3 grep Search a file for a pattern. 3:25 7 3.27e-10 38 failure
GREP-4 grep -i Find a pattern in the lines of a file. Ignore case. 3:14 4 3.27e-13 10 success
GREP-4 grep -i Find a pattern in the lines of a file. Ignore case. 3:01 4 3.27e-13 10 success
HEAD-1 head Print the first 10 lines of a file. 2:13 4 5.58e-13 1 success
HEAD-2 headsort Print the first 10 lines of a file in sorted order. 3:12 2 1.12e-15 1 success
HEAD-3 sorthead Sort a file. Print the first 10 lines. 7:56 2 1.12e-15 8 success
HEAD-4 head -n 7 Print the first 7 lines of a file. 1:26 6 5.58e-13 1 success
LS-1 ls Print the names of the files in a directory. 10:39 5 1.20e-11 20 success
LS-2 ls Display the entries in a folder. 2:10 2 1.20e-11 13 success
LS-3 ls -S Print the files in a directory. Sort by size. 4:16 2 1.73e-16 16 success
LS-4 ls -Sr Print the files in a directory. Sort by size. 3:24 2 8.65e-14 2 success
LS-5 ls -X Print the files in a directory. Sort by extension. Ignore hidden files. 12:11 6 1.50e-13 2 success
LS-6 lsmed Print all media files in a directory. 4:09 17 1.20e-11 2 success
LS-7 lsnamessizes Print the names and sizes of files in a directory. Scale sizes by 1024. 3:05 1 3.20e-16 51 success
LS-8 ls -L Print the files in a directory. Show more information. 0 failure
LS-9 lscount Print the number of things in a directory. 3:08 8 3.47e-9 1 success
MATH-1 add Add x and y 0 failure
MATH-2 add Add value and value 2:09 24 1.27e-11 3 success
MATH-3 mult Multiply value and value. 2:04 26 1.40e-4 24 failure
MATH-4 mult Multiply bd and bd. 1:31 44 7.30e-13 14 success
MATH-5 mult Multiply big decimal and big decimal. 1:25 8 7.30e-13 2 success
MATH-6 1024mult Multiply value and value. Scale result by 1024 4:30 4 3.91e-13 70 success
MATH-7 1024mult Multiply bd and bd. Divide by 1024. 2:57 4 3.51e-15 31 success
MATH-8 1024mult Multiply big decimal and big decimal. Divide result by 1024. 2:23 27 4.56e-10 8 failure
PWD-1 pwd Print the name of the current working directory. 2:05 9 1.78e-5 1 success
PWD-2 pwd Print the user directory. 1:51 10 1.78e-4 1 success
PWD-3 pwd Print the current directory. 1:33 10 1.78e-4 1 success
PWD-4 pwd Print the working directory. 1:31 8 1.78e-4 1 success
PWD-5 pwd Show the current working directory. 1:12 1 1.78e-4 1 success
PWD-6 pwd -P Print name of the current directory. Avoid all symlinks. 0 failure
SORT-1 sort Sort a file. 4:26 2 7.19e-9 6 success
SORT-2 sort Sort the lines of a file. 3:50 1 7.19e-9 4 success
SORT-3 sort -r Print the lines of a file in reverse sorted order. 11:34 1 1.44e-11 2 success
SORT-4 sort -n Print the lines of a file in sorted order. Compare by numerical value. 0 failure
SORT-5 sort Sort a file by line. 3:33 1 1.80e-8 2 success
SORT-6 sort Sort the contents of a file. 4:21 1 7.19e-9 13 success
SORT-7 sort -R Sort a file. Sort by random hash of keys. 0 failure
TAIL-1 tail Print the last 10 lines of a file. 2:05 2 5.46e-14 1 success
TAIL-2 tailrev Print the last 10 lines of a file. Reverse the lines. 0 failure
TAIL-3 tailtac Print the last 10 lines of a file. Reverse the lines. 1:54 1 1.09e-16 1 success
TAIL-4 tailremblank Print the last 10 lines of a file. Remove blank lines. 12:18 2 3.64e-21 1 success
UNIQ-1 uniq Print a file. Filter adjacent matching lines. 0 failure
WGET-1 wget -q Download a file. 6:03 1 3.13e-7 1 success
WGET-2 wget -q Download remote file. 4:48 2 3.13e-7 1 success
WGET-3 wget -q Open connection. Download file. 8:22 3 3.13e-7 1 success
WGET-4 wget -q Open network connection. Download file. 10:34 1 3.13e-7 1 success
ZIP-1 zipinfo -1 Print the entries in a zipfile. 3:07 6 2.46e-9 1 success
ZIP-2 zipinfo -1 Show the stuff in a zipfile. 1:57 4 2.46e-9 1 success
ZIP-3 zipinfo -1 Print the files in a zipfile. 2:41 4 2.46e-9 8 success

Fig. 2. Macho’s results for generating various programs. ‘Pass’ is the number of solutions that pass the unit test. ’Best Prior’ is the prior probability of the
solution, and a rough approximation of how long it would take Macho to generate the solution without the natural language. ’Rank’ is the number of tries
Macho needed to pass the test.

“reasonable” output to be correct. Originally we wanted to use
the language directly from the man pages (hence the name
Macho) but this turned out to be very difficult. Instead we
picked a set of natural language/example inputs that are right
on the border of Macho’s capabilities.

A. Results

Figure 2 shows our results on a large selection of different
natural language inputs. Any solution that passed the test was
byte identical; it was judged correct or not after an additional
manual inspection.

1) Coreutils: pwd: pwd doesn’t pose many issues for
Macho, with the exception being “Avoid all symlinks”. Avoid
is a difficult general-purpose word, and symlinks aren’t well
supported in Java.

2) Coreutils: cat: Macho is only one character away from
cat -E; its best solution appends “$” after all lines, even
those that don’t end with a linefeed. In contrast, prepending
“$” at the beginning of the line is easy, even without specific
natural language.

3) Coreutils: count: This isn’t a real core utility, but it
shows off Macho’s adjective filtering mechanism, which uses
functions to select a subset of objects. This is very important
for natural language code, because without formal structure
much of the input text is often devoted to when and where the
new code applies.

4) Coreutils: sort: Sort is basically cat with an extra
function at the end. Macho infers most of the print statements
here; any time the user requests a task which is implemented
by a functional library, Macho tries printing the result rather
than throwing it away.Sort on our linux machine does not put
its arguments in ASCII order by default, so whenever Macho
sorts an array of strings it tries both ASCII and dictionary
order, which ignores whitespace and case.

5) Coreutils: grep: Grep is a great example of Macho’s
need for specialized knowledge - there is no real alternative for
handling “Ignore case” other than knowing that it is an option
to the java.util.regex.Pattern function. Macho is
only stymied by another tricky word, context. GREP-3 is
almost correct, but Macho tries case insensitive regexes first
and the unit test contains no upper case characters.

6) Coreutils: ls: Ls was our original example and fairly
straightforward for Macho. Ls -l, “Print more information”
is both extremely interesting and extremely hard.

7) Coreutils: wget and cp: Default wget and cp are both
very simple programs (other than mimicking the extremely
complicated output of wget under default options, which
Macho does not generate) and were handled easily by Macho.
cp -i, “Prompt before overwrite” looks very hard but is
probably right on the border of Macho’s capabilities.

8) Coreutils: head and tail: head and tail were handled
by a pattern which takes the “first” and “last” part of an array,
although Macho takes a subsequence rather than cutting the
iteration short for head.

Fig. 3. The rank of the first solution to pass the unit test according to the
probabilistic model. A rank of one implies that Macho can solve the problem
without the unit test, while a larger rank is the number of solutions Macho
had to try before finding one that would pass.

9) Custom: Math: The math programs are the easiest ones
and the most similar to a traditional system. Interestingly
Macho does not get ’Add x and y’ because of a parser error.
Macho also failed on MATH-3 and MATH-8 because we used
a unit test with only one example. In both cases it generated
a constant format string which passed the test.

10) Custom: Zip: Zip is almost identical to ls, except that
we had to add support for iteration over java Enumerations.

B. Only Natural Language

Figure 3 shows the CDF of the number of candidate solu-
tions Macho tried before finding one that would pass the test.
Approximately half of the programs pass on the first attempt,
which means that they could be correctly synthesized from
only natural language. Nevertheless, adding unit tests hugely
improves Macho’s accuracy (from 35% to 80%) and those
improvements come disproportionately on the more abstract
programs.

But even more importantly, the unit test improved Macho’s
estimation of its accuracy. The first (and most highly ranked
according to the probabilistic model) solution to pass the
unit test was correct in all but three cases which means that
Macho’s confidence in its own correctness improves from 35%
to 95% by adding tests.

C. Only Examples

Figure 4 shows the CDF of the prior probability of the best
solution. This represents a rough estimate of the inverse of the
number of potential programs that Macho would have to try
without natural language to guide the search. Because Macho
searches the entire Java standard library, the space of potential
programs grows very quickly. Macho would require billions
of guesses to synthesize an average program.

This graph is both optimistic and pessimistic. It is optimistic
because Macho’s prior does not include any terms regarding
the shape of the program: which functions operate on which

Fig. 4. Macho’s prior score for the best solution that passed the test. This is
a rough approximation of how long it would take Macho to find each program
by brute force.

variables and which statements are inside which pieces of con-
trol flow. Any true enumeration of candidate programs would
have to take this into account. It is pessimistic because it is
probably possible to learn more efficient heuristics specifically
for programming by example. Macho tries many candidate
solutions that do not “make sense” to human programmers.

D. Macho vs abstraction

Most of the programs Macho writes are very simple and do
not appear to contain much ambiguity. We would like to show
you a few of the more interesting decisions that Macho must
make.

1) Cat: bytes vs. lines: One of the first programs that
Macho successfully wrote was cat. Its version opened the
BufferedReader, read each line in a loop, and printed this
line to the screen - Figure 5. This looks good, but when
we went to actually test this version against the examples,
we found a small but annoying bug: if the file does not end
with a linefeed, an additional one will be created. Unlike the
C routine fgets(), the BufferedReader.readLine()
call strips trailing linefeeds, which requires the additional “\n”
in the format call, which will then appear regardless of whether
the last line in the file ended with a linefeed or not.

Depending on what the programmer is trying to do, this may
be a convenient addition or a mission critical problem, and it
is not clear that the Java version is actually wrong. Macho
can avoid this problem by generating two different versions
of cat; one reads the file by byte and the other by line. In
the end we did implement our own version of readLine
which mirrors the behavior of fgets and added it to the list
of libraries, which is necessary for the versions of cat which
do more than just write the file.

2) Ls: file length, “large” files: The natural language spec
for ls -S includes “sort the files by size”. Macho’s first
choice (by a wide margin) is the File.length() function,
which returns the size of the file in bytes. However, it finds
two other interesting solutions: one reads the file into an array
of lines, and another into an array of bytes, and then both

public class CAT1 { //read file by lines - wrong!
public static void main(String[] args) {
try {
File file = new File(args[0]);
FileReader file_reader = new FileReader(file);
BufferedReader reader =

new BufferedReader(file_reader);
while(true) {
String line = reader.readLine();
if(line == null) break;
System.out.format("%1$s\n", line);
}
}
catch (Exception e) {
System.out.println(e.toString());
}
}
}

public class CAT2 { //read file by bytes - right!
public static void main(String[] args) {
try {
File file = new File(args[0]);
FileInputStream reader =

new FileInputStream(file);
while(true) {
int byteRead = reader.read();
boolean eof = byteRead == -1;
if(eof) break;
System.out.format("%1$c", byteRead);
}
}
catch (Exception e) {
System.out.println(e.toString());
}
}
}

Fig. 5. Both of these programs were found by Macho during its attempts to
implement cat from the text “Print a file.” The first program has a very subtle
bug uncovered by the examples - see III-D1 for details.

use the array.length variable to measure the size. We
don’t think the number of lines in a file is a better metric for
size than byte count, but the point is that abstract qualities
like size often have multiple definitions, like height, width,
volume, weight, or bytes count. Macho can tolerate multiple
definitions for these qualities by trying multiple solutions.

3) Formatting: Matching the output of the coreutils exactly
requires a lot of attention to formatting. Consider cat -b,
which prints the lines of a file and numbers only the blank
lines. Macho must synthesize the format string “%6d “,
including the trailing spaces, for the line number - nothing else
will work. Macho also tries “%6d” for the line number and
“ %s” for the line, which moves the spaces from one format
specifier to the other. Unfortunately this adds extra invisible
whitespace before every empty line. This kind of formatting
is extremely clumsy to describe in natural language.

E. Performance

We have been focusing on correctness rather than perfor-
mance, but Macho is not that slow. Macho is not optimized at
all: it is implemented in Lisp, its data structures are all lists
which are traversed many times, its graph pattern matcher is
extraordinarily simple and runs in exponential time, it runs on

one processor despite having a huge capacity for parallelism,
many of its database lookups could be precomputed instead
of cached, and it does not reuse java virtual machines across
compiling and running its programs.

IV. RELATED WORK

A. Natural-Language Processing

Programming by natural-language specification is an ambi-
tious goal. Largely, Natural-Language Processing (NLP) does
not aim at this goal presently because it depends on open
questions in artificial intelligence, such as commonsense rea-
soning [15], [16], [17], and knowledge-based natural-language
understanding [18], [19], [20]. Instead, NLP works focus on
fundamental semantics of natural language and computational
applications.

The closest NLP works to ours, like translation and question
answering [21], focus on using large corporas to yield reason-
able results that are statistically reliable. Those applications
rely on availability of simple solutions that do not require com-
bination or deeper reasoning. For example, question answering
looks for a sentence that includes the words that appear in the
question.

Compared to NLP-based works, our work uses large corpora
of possible interpretations of natural-language texts, applying
combinatorial optimization to reach reasonable conclusions. In
doing so, we use the type constraints available from our large
repository of code segments together with available records
of acceptable outputs (our unit tests). These enable combining
results of natural-langauge-based segments in ways that are
not possible in many other NLP applications.

B. Code snippet search

Programming languages like Java or C# are more difficult to
learn than their less bulky counterparts. This is partly because
of the explosion of APIs in those languages. A true Java
programmer must be familiar with thousands of classes, many
of which change between versions.

Many researchers have proprosed tools to make it easier
to find chunks of code. Prospector [22] leverages the type
system to answer questions like “How do I go from an
ICompilationUnit to an IDebugWindow object”. SNIFF [23]
works more on the natural language using the documentation
and intersecting examples to determine the really critical
function calls. Other attempts [24], [25], [26] use both, as
well as the context of the function around the requested
snippet. While snippet search is a useful tool, especially for
novice programmers, there will often not be a library call that
perfectly matches the users requirements.

C. Programming by sketching

Natural language is not always the most suitable way to
express a computation. Programming by sketching [27], [28]
works by taking a simple, easy to understand version of a very
complex computation (often the inner loop from an encryption
or signal processing algorithm) and generating a faster one
from a sketch, a partially specified program. Sketching tries

to make hard problems simple, while Macho tries to make
simple problems trivial.

D. Deductive program synthesis

An alternative to programming that is still under devel-
opment is to tell the computer what you want in a formal
language. For simple mathematical properties, there are me-
chanical rules that can transform them into programs [29].
The more complicated the system, the trickier the synthesis
and the larger the specification. Amphion [30] can synthesize
programs that calculate properties of solar system objects
using a Fortran library and graphical input. Termite [31]
generates device drivers automatically from a list of device
and operating system state transitions. Like Macho, Bhansali
et. al [32] tackle core utilities.

The problem with most of these is that because the user must
still ultimately specify every detail, the formal description is
not massively smaller than the code. For example, Termite’s
device-specific specification is approximately half the length
of the corresponding Linux device driver C code, although
probably somewhat less error-prone to describe. Macho allows
the user to specify important details through examples while
filling in the less important ones itself, thus achieving 90% of
the results with 10% of the work.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have discussed Macho, a system that
synthesizes simple Java programs from a combination of
natural language and examples, and how combining natural
language and examples makes it easier to generate correct
solutions while also reducing the ambiguity in more abstract
natural language. Macho can correctly generate 55 out of 69
test programs in 2-20 minutes each.

REFERENCES

[1] R. Knöll and M. Mezini, “Pegasus: first steps toward a naturalistic
programming language,” in OOPSLA ’06: Companion to the 21st
ACM SIGPLAN symposium on Object-oriented programming systems,
languages, and applications. New York, NY, USA: ACM, 2006, pp.
542–559.

[2] E. W. Dijkstra, “On the foolishness of ’natural language programming’,”
http://userweb.cs.utexas.edu/users/EWD/transcriptions/EWD06xx/
EWD667.html.

[3] A. W. Biermann and B. W. Ballard, “Toward natural language compu-
tation,” Comput. Linguist., vol. 6, no. 2, pp. 71–86, 1980.

[4] R. Chitchyan, A. Rashid, P. Rayson, and R. Waters, “Semantics-based
composition for aspect-oriented requirements engineering,” in AOSD
’07: Proceedings of the 6th international conference on Aspect-oriented
software development. New York, NY, USA: ACM, 2007, pp. 36–48.

[5] D. Price, E. Riloff, J. Zachary, and B. Harvey, “Naturaljava: a natural
language interface for programming in java,” in IUI ’00: Proceedings
of the 5th international conference on Intelligent user interfaces. New
York, NY, USA: ACM, 2000, pp. 207–211.

[6] A. Cypher, “Eager: programming repetitive tasks by example,” in CHI
’91: Proceedings of the SIGCHI conference on Human factors in
computing systems. New York, NY, USA: ACM, 1991, pp. 33–39.

[7] D. C. Halbert, “Programming by example,” Ph.D. dissertation, Univer-
sity of California, Berkeley, 1984.

[8] P. Maes and R. Kozierok, “Learning interface agents,” in AAAI, 1993,
pp. 459–465.

[9] W. R. Harris and S. Gulwani, “Spreadsheet table transformations from
examples,” in PLDI, 2011, pp. 317–328.

[10] A. Cozzie, M. Finnicum, and S. T. King, “Macho: Programming with
man pages,” in Proceedings of the 2011 Workshop on Hot Topics in
Operating Systems (HotOS 2011), 2011.

[11] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” JOURNAL OF
THE AMERICAN SOCIETY FOR INFORMATION SCIENCE, vol. 41,
no. 6, pp. 391–407, 1990.

[12] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
J. Mach. Learn. Res., vol. 3, pp. 993–1022, Mar. 2003. [Online].
Available: http://dl.acm.org/citation.cfm?id=944919.944937

[13] D. Klein and C. D. Manning, “Accurate unlexicalized parsing,”
in Proceedings of the 41st Annual Meeting on Association for
Computational Linguistics - Volume 1, ser. ACL ’03. Stroudsburg, PA,
USA: Association for Computational Linguistics, 2003, pp. 423–430.
[Online]. Available: http://dx.doi.org/10.3115/1075096.1075150

[14] J. Pettibone, “Penn treebank tags,” http://bulba.sdsu.edu/jeanette/thesis/
PennTags.html.

[15] J. R. Hobbs and R. C. Moore, Eds., Formal Theories of the Common-
sense World. Westport, CT, USA: Greenwood Publishing Group Inc.,
1985.

[16] C. Matuszek, M. Witbrock, R. C. Kahlert, J. Cabral, D. Schneider,
P. Shah, and D. Lenat, “Searching for common sense: Populating cyc
from the web,” in In Proceedings of the Twentieth National Conference
on Artificial Intelligence, 2005, pp. 1430–1435.

[17] J. McCarthy, “Notes on formalizing context,” in IJCAI, 1993, pp. 555–
562.

[18] M. Connor, Y. Gerner, C. Fisher, and D. Roth, “Minimally supervised
model of early language acquisition,” in Annual conference on compu-
tational natural language learning (CoNLL), 2009.

[19] J. R. Hobbs, “Deep lexical semantics,” in 9th international conference
on intelligence text processing and computational linguistics (CICLing-
2008), 2009.

[20] K. Toutanova and C. D. Manning, “Enriching the knowledge sources
used in a maximum entropy part-of-speech tagger,” in Joint SIGDAT
conference on empirical methods in natural language processing and
very large corpora (EMNLP/VLC-2000), 2000, pp. 63–70.

[21] R. de Salvo Braz, R. Girju, V. Punyakanok, D. Roth, and M. Sammons,
“An inference model for semantic entailment in natural language,” in
Proceedings of the International Joint Conference on Artificial Intelli-
gence (IJCAI 2005), 2005.

[22] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman, “Jungloid mining:
helping to navigate the api jungle,” in PLDI ’05: Proceedings of the 2005
Conference on Programming Language Design and Implementation.
New York, NY, USA: ACM, 2005, pp. 48–61.

[23] S. Chatterjee, S. Juvekar, and K. Sen, “Sniff: A search engine for Java
using free-form queries,” in FASE ’09: Proceedings of the 12th Interna-
tional Conference on Fundamental Approaches to Software Engineering.
Berlin, Heidelberg: Springer-Verlag, 2009, pp. 385–400.

[24] M. Grechanik, C. Fu, Q. Xie, C. McMillan, D. Poshyvanyk, and
C. Cumby, “A search engine for finding highly relevant applications,”
in ICSE ’10: Proceedings of the International Conference on Software
Engineering 2010, 2010.

[25] G. Little and R. C. Miller, “Keyword programming in java,” in ASE
’07: Proceedings of the 22nd International Conference on Automated
Software Engineering. New York, NY, USA: ACM, 2007, pp. 84–93.

[26] N. Sahavechaphan and K. Claypool, “Xsnippet: mining for sample
code,” SIGPLAN Not., vol. 41, no. 10, pp. 413–430, 2006.

[27] A. Solar-Lezama, R. Rabbah, R. Bodı́k, and K. Ebcioğlu, “Programming
by sketching for bit-streaming programs,” in PLDI ’05: Proceedings of
the 2005 Conference on Programming Language Design and Implemen-
tation. New York, NY, USA: ACM, 2005, pp. 281–294.

[28] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat,
“Combinatorial sketching for finite programs,” in ASPLOS-XII: Proceed-
ings of the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems. New York, NY, USA:
ACM, 2006, pp. 404–415.

[29] Z. Manna and R. Waldinger, “Fundamentals of deductive program
synthesis,” IEEE Trans. Softw. Eng., vol. 18, no. 8, pp. 674–704, 1992.

[30] M. R. Lowry and J. V. Baalen, “Meta-amphion: Synthesis of efficient
domain-specific program synthesis systems,” Autom. Softw. Eng., vol. 4,
no. 2, pp. 199–241, 1997.

[31] L. Ryzhyk, P. Chubb, I. Kuz, E. L. Sueur, and G. Heiser, “Automatic
device driver synthesis with Termite,” in Proceedings of the 22nd ACM

Symposium on Operating Systems Principles (SOSP), Big Sky, MT,
USA, Oct 2009.

[32] S. Bhansali and M. T. Harandi, “Synthesis of unix programs using
derivational analogy,” Mach. Learn., vol. 10, no. 1, pp. 7–55, 1993.

